题目内容

【题目】如图所示的是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2m,则水面宽度增加( )

A. B. C. D.

【答案】C

【解析】

根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-2代入抛物线解析式得出水面宽度,即可得出答案.

解:以AB所在的直线为x轴,向右为正方向,线段AB的垂直平分线为y轴,向上为正方向,建立如图所示的平面直角坐标系,

抛物线以y轴为对称轴,且经过A,B两点,OAOB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,代入A点坐标(-2,0),
得出:a=-0.5,所以抛物线解析式为y=-0.5x2+2,

y=-2代入抛物线解析式得出:-2=-0.5x2+2,

解得:x=±2

所以水面宽度增加到4米,比原先的宽度当然是增加了(4-4)米,
故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网