题目内容
【题目】如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=1,则BC的长为( )
A.3
B.2+
C.2
D.1+
【答案】A
【解析】解:∵DE是AB的垂直平分线,
∴AD=BD,
∴∠DAE=∠B=30°,
∴∠ADC=60°,
∴∠CAD=30°,
∴AD为∠BAC的角平分线,
∵∠C=90°,DE⊥AB,
∴DE=CD=1,
∵∠B=30°,
∴BD=2DE=1,
∴BC=3,
故选A.
【考点精析】根据题目的已知条件,利用线段垂直平分线的性质和含30度角的直角三角形的相关知识可以得到问题的答案,需要掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
练习册系列答案
相关题目