题目内容
【题目】如图,点A、B分别在射线OM、ON上运动(不与点O重合).
(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB= °;
(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,求∠ACB的度数;
(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;
(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求∠E的度数;如果会,请说明理由.
【答案】(1)135;(2)90°+n°;(3)90°-n°;(4)40°
【解析】
(1)由三角形内角和定理得出∠OBA+∠OAB=90°,由角平分线的也得出∠ABC+∠BAC=×90°=45°,再由三角形内角和定理即可得出结果;
(2)由三角形内角和定理和角平分线的也得出∠ABC+∠BAC=90°-n°,再由三角形内角和定理得出∠ACB的度数;
(3)求出∠CBD=90°,同理∠CAD=90°,由四边形内角和求出∠ACB+∠ADB=180°,由(1)知:∠ACB=90°+n°,即可得出结果;
(4)由三角形外角性质得出∠OAB=∠NBA-∠AOB,由角平分线定义得出∠NBA=∠E+∠OAB,∠NBA=∠E+(∠NBA-80°),∠NBA=∠E+∠NBA-40°,即可得出结果.
(1)∵∠MON=90°,
∴∠OBA+∠OAB=90°,
∵∠OBA、∠OAB的平分线交于点C,
∴∠ABC+∠BAC=×90°=45°,
∴∠ACB=180°-45°=135°;
故答案为:135;
(2)在△AOB中,∠OBA+∠OAB=180°-∠AOB=180°-n°,
∵∠OBA、∠OAB的平分线交于点C,
∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°-n°),
即∠ABC+∠BAC=90°-n°,
∴∠ACB=180°-(∠ABC+∠BAC)=180°-(90°-n°)=90°+n°;
(3)∵BC、BD分别是∠OBA和∠NBA的角平分线,
∴∠ABC=∠OBA,∠ABD=∠NBA,
∠ABC+∠ABD=∠OBA+∠NBA,∠ABC+∠ABD=(∠OBA+∠NBA)=90°,
即∠CBD=90°,
同理:∠CAD=90°,
∵四边形内角和等于360°,
∴∠ACB+∠ADB=360°-90°-90°=180°,
由(1)知:∠ACB=90°+n°,
∴∠ADB=180°-(90°+n°)=90°-n°,
∴∠ACB+∠ADB=180°,∠ADB=90°-n°;
(4)∠E的度数不变,∠E=40°;理由如下:
∵∠NBA=∠AOB+∠OAB,
∴∠OAB=∠NBA-∠AOB,
∵AE、BC分别是∠OAB和∠NBA的角平分线,
∴∠BAE=∠OAB,∠CBA=∠NBA,
∠CBA=∠E+∠BAE,即∠NBA=∠E+∠OAB,
∠NBA=∠E+(∠NBA-80°),
∠NBA=∠E+∠NBA-40°,
∴∠E=40°.
【题目】某公交公司有A,B型两种客车,它们的载客量和租金如下表:
A | B | |
载客量(人/辆) | 45 | 30 |
租金(元/辆) | 400 | 280 |
某中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动.设租用A型客车x辆,根据要求回答下列问题:
(1)用含x的式子填写下表:
车辆数(辆) | 载客量 | 租金(元) | |
A | x | 45x | 400x |
B | 5-x |
(2)若要保证租车费用不超过1900元,求x的最大值.
【题目】某商场有一种游戏,规则是:在一只装有8个红球和若干个白球(每个球除颜色外都相同)的不透明的箱子中,随机摸出1个球,摸到红球就可获得一瓶饮料.工作人员统计了参加游戏的人数和获得饮料的人数(见下表).
(1)计算并完成表格;
参加游戏的人数 | 200 | 300 | 400 | 500 |
获得饮料的人数 | 39 | 63 | 82 | 99 |
获得饮料的频率 |
(2)估计获得饮料的概率;
(3)请你估计袋中白球的数量.