题目内容
【题目】如图,点M,N在半圆的直径AB上,点P,Q在 上,四边形MNPQ为正方形.若半圆的半径为 ,则正方形的边长为 .
【答案】2
【解析】解:连接OP,设正方形的边长为a,则ON= ,PN=a,
在Rt△OPN中,
ON2+PN2=OP2,即( )2+a2=( )2,解得a=2.
所以答案是:2.
【考点精析】利用勾股定理的概念和正方形的性质对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
练习册系列答案
相关题目