题目内容
【题目】如图1,将矩形纸片ABCD沿对角线BD向上折叠,点C落在点E处,BE交AD于点F.
(1)求证:△BDF是等腰三角形;
(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AB=6,AD=8,求FG的长.
图1
图2
【答案】(1)详见解析;(2)①四边形BFDG是菱形;②.
【解析】
1)根据两直线平行内错角相等及折叠特性判断;
(2)①根据已知矩形性质及第一问证得邻边相等判断;
②根据折叠特性设未知边,构造勾股定理列方程求解.
(1)证明:如图1,由折叠得,∠DBC=∠DBE.∵AD∥BC∴∠DBC=∠BDA
∴∠BDA=∠DBE∴BF=DF∴△BDF是等腰三角形.
(2)①四边形BFDG是菱形,理由如下:如图2
∵AD∥BC.DG∥BF.∴四边形BFDG是平行四边形,
又∵BF=DF,∴四边形BFDG是菱形.
②∵四边形BFDG是菱形.∴FG⊥BD.BO=BD.FO=FG
∵AB=6,AD=8∴BD=10.∴BO=5.设DF=x,
则AF=8-x在Rt△ABF中,62+(8-x)2=x2
解得x=,在Rt△BOF中,∴FO==∴FG=2FO=.
【题目】近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A、B两种型号的空气净化器,两种净化器的销售相关信息见下表:
A型销售数量(台) | B型销售数量(台) | 总利润(元) |
5 | 10 | 2000 |
10 | 5 | 2500 |
(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?
(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;
(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时,某长方体室内活动场地的总面积为200m2 , 室内墙高3m,该场地负责人计划购买5台空气净化器每天花费30分钟将室内就欧诺个气净化一新,若不考虑空气对流等因素,至少要购买A型空气净化器多少台?
【题目】某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
品名 | 猕猴桃 | 芒果 |
批发价元千克 | 20 | 40 |
零售价元千克 | 26 | 50 |
他购进的猕猴桃和芒果各多少千克?
如果猕猴桃和芒果全部卖完,他能赚多少钱?