题目内容
【题目】如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.
(1)求这条抛物线对应的函数解析式;
(2)求直线AB对应的函数解析式.
【答案】(1)y=x2+2x+1;(2)y=2x+2.
【解析】
试题分析:(1)抛物线与x轴仅有1个交点可知△=0时,即可得到4a2﹣4a=0,解方程即可求得a,即可得到抛物线解析式;(2)先求得A的坐标,已知点C是线段AB的中点,可判定点A与点B的横坐标互为相反数,再确定B点坐标,最后利用待定系数法求直线AB的解析式.
试题解析:
(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,
∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,
∴抛物线解析式为y=x2+2x+1;
(2)∵y=(x+1)2,
∴顶点A的坐标为(﹣1,0),
∵点C是线段AB的中点,
即点A与点B关于C点对称,
∴B点的横坐标为1,
当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),
设直线AB的解析式为y=kx+b,
把A(﹣1,0),B(1,4)代入得,解得,
∴直线AB的解析式为y=2x+2.
练习册系列答案
相关题目