题目内容
【题目】如图,直线y=x﹣2分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点D,且OD∥AB.
(1)求k的值;
(2)连接OP、AD,求证:四边形APOD是菱形.
【答案】(1)-3;(2)证明见解析.
【解析】分析:(1)在直角三角形AOB中,利用斜边上的中线等于斜边的一半得到AP=OP=PB,再由PC与x轴垂直,利用三线合一得到C为OA中点,根据OD与AB平行,得到一对内错角相等,利用ASA得到三角形DCO与三角形ACP全等,利用全等三角形对应边相等得到DC=PC,求出A与B坐标,进而确定出D坐标,代入反比例解析式求出k的值即可;
(2)由(1)的全等得到OD=AP,利用一组对边平行且相等的四边形为平行四边形得到APOD为平行四边形,再根据AP=OP即可得证.
详解:(1)∵∠AOB=90°,P为AB中点,
∴AP=OP=PB,
∵PC⊥AO,
∴AC=OC,
∵DO∥AB,
∴∠DOA=∠OAB,
∴△ACP≌△OCD,
∴DC=CP,
一次函数y=﹣x﹣2中,令y=0,得到x=﹣6,令x=0,得到y=﹣2,
即B点坐标(0,﹣2),A点坐标(﹣6,0),
∴OA=6,OB=2,
∵tan∠OAB=tan∠AOD=,又OC=3,
∴DC=1,
所以点D的坐标(﹣3,1),
代入反比例解析式得k=﹣3;
(2)证明:由(1)△ACP≌△OCD,得AP=DO,又AP∥DO,
∴四边形APOD为平行四边形,
又AP=PO,
∴四边形APOD为菱形.
【题目】我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:
脐 橙 品 种 | A | B | C |
每辆汽车运载量(吨) | 6 | 5 | 4 |
每吨脐橙获利(百元) | 12 | 16 | 10 |
(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.