题目内容
【题目】如图,在矩形中,将其折叠,使点与点重合, 则重叠部分的面积为( )
A.B.C.D.
【答案】B
【解析】
设DE=xcm,由翻折的性质可知DE=EB=x,则AE=(9﹣x)cm,在Rt△ABE中,由勾股定理求得ED的长;由翻折的性质可知∠DEF=∠BEF,由矩形的性质可知BC∥AD,从而得到∠BFE=∠DEF,故此可知∠BFE=∠FEB,得出FB=BE,最后根据三角形的面积公式求解即可.
解:设DE=xcm.
由翻折的性质可知DE=EB=x,∠DEF=∠BEF,则AE=(9﹣x)cm.
在Rt△ABE中,由勾股定理得;BE2=EA2+AB2,即x2=(9﹣x)2+32.
解得:x=5.
∴DE=5cm.
∵四边形ABCD为矩形,
∴BC∥AD.
∴∠BFE=∠DEF.
∴∠BFE=∠FEB.
∴FB=BE=5cm.
∴△BEF的面积=BFAB=×3×5=(cm2);
故选:B.
练习册系列答案
相关题目