题目内容
函数y =ax²(a≠0)与直线y =2x-3的图像交于点(1,b).
求:(1)a和b的值;
(2)求抛物线y =ax²的开口方向、对称轴、顶点坐标。
(1) a=-1,b=-1;(2)开口向下,对称轴为y轴,顶点坐标为(0,0).
【解析】
试题分析:(1)将点(1,b)代入直线y=2x-3中可求b,再代入y=ax2中可求a;
(2)根据a的符号判断y=ax2开口方向,对称轴为y轴,顶点坐标为(0,0);
(1)把(1,b)代入直线y=2x-3中,得b=2-3=-1,
把点(1,-1)代入y=ax2中,得a=-1;
(2)∵y=-x2中,a=-1,抛物线开口向下,对称轴为y轴,顶点坐标为(0,0);
考点:1.待定系数法求二次函数解析式;2.二次函数的图象;3.二次函数的性质.
练习册系列答案
相关题目