题目内容
正方形A1B1C1O,正方形A2B2C2C1,正方形A3B3C3C2,…按如图所示放置,点A1,A2,A3,…在直线y=kx+b上,C1,C2,C3,…在x轴上,已知B1(1,1),B2(3,2),则B4的坐标为______.
∵B1的坐标为(1,1),点B2的坐标为(3,2),
∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,
∴A1的坐标是(0,1),A2的坐标是:(1,2),
代入y=kx+b得:
,
解得:
,
则直线A1A2的解析式是:y=x+1.
∵A1B1=1,点B2的坐标为(3,2),
∴点A3的坐标为(3,4),
∴A3C2=A3B3=B3C3=4,
∴点B3的坐标为(7,4),
∴B1的纵坐标是:1=20,B1的横坐标是:1=21-1,
∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,
∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,
∴Bn的纵坐标是:2n-1,横坐标是:2n-1,
则Bn(2n-1,2n-1).
∴B4的坐标是:(24-1,24-1),即(15,8).
故答案为:(15,8).
∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,
∴A1的坐标是(0,1),A2的坐标是:(1,2),
代入y=kx+b得:
|
解得:
|
则直线A1A2的解析式是:y=x+1.
∵A1B1=1,点B2的坐标为(3,2),
∴点A3的坐标为(3,4),
∴A3C2=A3B3=B3C3=4,
∴点B3的坐标为(7,4),
∴B1的纵坐标是:1=20,B1的横坐标是:1=21-1,
∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,
∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,
∴Bn的纵坐标是:2n-1,横坐标是:2n-1,
则Bn(2n-1,2n-1).
∴B4的坐标是:(24-1,24-1),即(15,8).
故答案为:(15,8).
练习册系列答案
相关题目