题目内容
阅读材料:
=
=
-1;
=
=
-
;
=
=
-2
…
按照上述式子变形的思路求:
(1)
;
(2)
(n为正整数)
(3)根据你发现的规律,请计算:(
+
+
+…+
+
)(1+
).
1 | ||
|
1×(
| ||||
(
|
2 |
1 | ||||
|
| ||||||||
(
|
3 |
2 |
1 | ||
|
| ||||
(
|
5 |
…
按照上述式子变形的思路求:
(1)
1 | ||||
|
(2)
1 | ||||
|
(3)根据你发现的规律,请计算:(
1 | ||
1+
|
1 | ||||
|
1 | ||||
|
1 | ||||
|
1 | ||||
|
2011 |
考点:分母有理化
专题:规律型
分析:(1)利用已知将分子与分母同乘以(
-
)得出即可;
(2)利用已知将分子与分母同乘以(
-
)得出即可;
(3)利用(1)中所求规律进而化简求出即可.
7 |
6 |
(2)利用已知将分子与分母同乘以(
n+1 |
n |
(3)利用(1)中所求规律进而化简求出即可.
解答:解:(1)
=
=
-
;
(2)
=
=
-
;
(3)(
+
+
+…+
+
)(1+
)
=(
-1+
-
+
-
+…+
-
)×(1+
)
=(
-1)×(1+
)
=2011-1
=2010.
1 | ||||
|
| ||||||||
(
|
7 |
6 |
(2)
1 | ||||
|
| ||||||||
(
|
n+1 |
n |
(3)(
1 | ||
1+
|
1 | ||||
|
1 | ||||
|
1 | ||||
|
1 | ||||
|
2011 |
=(
2 |
3 |
2 |
4 |
3 |
2011 |
2010 |
2011 |
=(
2011 |
2011 |
=2011-1
=2010.
点评:此题主要考查了分母有理化,正确化简二次根式是解题关键.
练习册系列答案
相关题目