题目内容
【题目】如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.
(1)求抛物线的解析式;
(2)当何值时,的面积最大?并求最大值的立方根;
(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.
【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,
最大值的立方根为= ;(3)存在满足条件的点P,t的值为1或
【解析】
试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;
(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;
(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.
试题解析: (1)由题意可得,解得,
∴抛物线解析式为y=﹣x2+2x+3;
(2)∵A(0,3),D(2,3),
∴BC=AD=2,
∵B(﹣1,0),
∴C(1,0),
∴线段AC的中点为(,),
∵直线l将平行四边形ABCD分割为面积相等两部分,
∴直线l过平行四边形的对称中心,
∵A、D关于对称轴对称,
∴抛物线对称轴为x=1,
∴E(3,0),
设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,
∴直线l的解析式为y=﹣x+,
联立直线l和抛物线解析式可得,解得或,
∴F(﹣,),
如图1,作PH⊥x轴,交l于点M,作FN⊥PH,
∵P点横坐标为t,
∴P(t,﹣t2+2t+3),M(t,﹣t+),
∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,
∴S△PEF=S△PFM+S△PEM=PMFN+PMEH=PM(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,
∴当t=时,△PEF的面积最大,其最大值为×,
∴最大值的立方根为=;
(3)由图可知∠PEA≠90°,
∴只能有∠PAE=90°或∠APE=90°,
①当∠PAE=90°时,如图2,作PG⊥y轴,
∵OA=OE,
∴∠OAE=∠OEA=45°,
∴∠PAG=∠APG=45°,
∴PG=AG,
∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),
②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,
则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,
∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,
∴∠PAQ=∠KPE,且∠PKE=∠PQA,
∴△PKE∽△AQP,
∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),
综上可知存在满足条件的点P,t的值为1或.