题目内容

【题目】如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接BF,则图中阴影部分的面积是_____

【答案】6﹣π

【解析】过F作FM⊥BE于M,则∠FME=∠FMB=90°,

∵四边形ABCD是正方形,AB=2,
∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,
由勾股定理得:BD=2
∵将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,
∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,
∴BM=FM=2,ME=2,
∴阴影部分的面积=×2×2+×4×2+-=6-π.
故答案为:6-π.

练习册系列答案
相关题目

【题目】请阅读下列材料,并完成相应的任务:

在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABCACBC两边上分别取一点XY,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:

第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点AAZ∥A'Z',交BD于点Z.第四步,过点ZZY∥AC,交BC于点Y,再过点YYX∥ZA,交AC于点X.

则有AX=BY=XY.

下面是该结论的部分证明:

证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,

∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.

同理可得.∴

∵Z'A'=Y'Z',∴ZA=YZ.

在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABCACBC两边上分别取一点XY,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:

第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点AAZ∥A'Z',交BD于点Z.第四步,过点ZZY∥AC,交BC于点Y,再过点YYX∥ZA,交AC于点X.

则有AX=BY=XY.

下面是该结论的部分证明:

证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,

∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.

同理可得.∴

∵Z'A'=Y'Z',∴ZA=YZ.

任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;

(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;

(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是   

A.平移 B.旋转 C.轴对称 D.位似

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网