题目内容

25、如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于D,交AB于E,且CF=BE.
(1)求证:四边形BECF是菱形;
(2)当∠A的大小满足什么条件时,菱形BECF是正方形?回答并证明你的结论.
分析:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,∵CF=BE,BE=EC=BF=FC,∴四边形BECF是菱形;
(2)由菱形的性质知,对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形,根据直角三角形中两个角锐角互余得,∠A=45度.
解答:证明:(1)证法一:如图
∵EF垂直平分BC,∴BE=EC,BF=CF,
∵CF=BE,∴BE=EC=CF=BF,
∴四边形BECF是菱形;

证法二:如图
∵EF垂直平分BC,∴BD=DC,EF⊥BC
∵BE=CF,∴△BED≌△CFD,
∴DE=DF
∴四边形BECF是菱形;

(2)解法一
当∠A=45°时,菱形BECF是正方形.
∵∠A=45°,∠ACB=90°,∴∠EBC=45°
∴∠EBF=2∠EBC=2×45°=90°
∴菱形BECF是正方形.

解法二:
当∠A=45°时,菱形BECF是正方形.
∵∠A=45°,∠ACB=90°,∴∠EBC=45°,
∵BE=EC,∴∠ECB=∠EBC=45°∴∠BEC=90°,
∴菱形BECF是正方形.
点评:本题利用了:菱形的判定和性质及中垂线的性质、直角三角形的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网