题目内容
【题目】为了方便居民低碳出行,聊城市公共自行车租赁系统(一期)试运行.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.
(1)求AD的长;
(2)求点E到AB的距离.(精确到0.1cm,参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
【答案】
(1)解:在Rt△ADF中,由勾股定理得,
AD= = =15(cm)
(2)解:AE=AD+CD+EC=15+30+15=60(cm),
如图②,过点E作EH⊥AB于H,
在Rt△AEH中,sin∠EAH= ,
则EH=AEsin∠EAH=ABsin75°≈60×0.97=58.2(cm).
答:点E到AB的距离为58.2 cm.
【解析】(1)根据勾股定理求出AD的长;(2)作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.
练习册系列答案
相关题目
【题目】为降低空气污染,公交公司决定全部更换节能环保的燃气公交车.计划购买A型和B型两种公交车共10辆,其中每台的价格,年均载客量如表:
A型 | B型 | |
价格(万元/辆) | a | b |
年均载客量(万人/年/辆) | 60 | 100 |
若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元
(1)求购买每辆A型公交车和每辆B型公交车分别多少万元?
(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车年均载客总和不少于680万人次,有哪几种购车方案?请你设计一个方案,使得购车总费用最少.