题目内容
如图,已知抛物线经过,两点,顶点为.
(1)求抛物线的解析式;
(2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.
略
解析:解:(1)已知抛物线经过,
解得
所求抛物线的解析式为. 3分
(2),,
可得旋转后点的坐标为 4分
当时,由得,
(3)可知抛物线过点
将原抛物线沿轴向下平移1个单位后过点.
平移后的抛物线解析式为:. 5分
练习册系列答案
相关题目