ÌâÄ¿ÄÚÈÝ
£¨2011ËÄ´¨ÄÚ½£¬¼ÓÊÔ5£¬12·Ö£©Í¬Ñ§ÃÇ£¬ÎÒÃÇÔø¾Ñо¿¹ýn¡ÁnµÄÕý·½ÐÎÍø¸ñ£¬µÃµ½ÁËÍø¸ñÖÐÕý·½ÐεÄ×ÜÊýµÄ±í´ïʽΪ12+22+32+¡+n2£®µ«nΪ100ʱ£¬Ó¦ÈçºÎ¼ÆËãÕý·½ÐεľßÌå¸öÊýÄØ?ÏÂÃæÎÒÃǾÍÒ»ÆðÀ´Ì½¾¿²¢½â¾öÕâ¸öÎÊÌ⣮Ê×ÏÈ£¬Í¨¹ý̽¾¿ÎÒÃÇÒѾ֪µÀ0¡Á1+1¡Á2+2¡Á3+¡+(n¡ª1)¡Án=n(n+1)(n¡ª1)ʱ£¬ÎÒÃÇ¿ÉÒÔÕâÑù×ö£º
(1)¹Û²ì²¢²ÂÏ룺
12+22=(1+0)¡Á1+(1+1)¡Á2=1+0¡Á1+2+1¡Á2=(1+2)+(0¡Á1+1¡Á2)
12+22+32=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3
=1+0¡Á1+2+1¡Á2+3+2¡Á3
=(1+2+3)+(0¡Á1+1¡Á2+2¡Á3)
12+22+32+42=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3+
=1+0¡Á1+2+1¡Á2+3+2¡Á3+
=(1+2+3+4)+( )
¡¡
(2)¹éÄɽáÂÛ£º
12+22+32+¡+n2=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3+¡+n
=1+0¡Á1+2+1¡Á2+3+2¡Á3+¡+n+(nÒ»1)¡Án
=( ) +
= +
=¡Á
(3)ʵ¼ùÓ¦Óãº
ͨ¹ýÒÔÉÏ̽¾¿¹ý³Ì£¬ÎÒÃǾͿÉÒÔËã³öµ±nΪ100ʱ£¬Õý·½ÐÎÍø¸ñÖÐÕý·½ÐεÄ×ܸöÊýÊÇ £®
(1)¹Û²ì²¢²ÂÏ룺
12+22=(1+0)¡Á1+(1+1)¡Á2=1+0¡Á1+2+1¡Á2=(1+2)+(0¡Á1+1¡Á2)
12+22+32=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3
=1+0¡Á1+2+1¡Á2+3+2¡Á3
=(1+2+3)+(0¡Á1+1¡Á2+2¡Á3)
12+22+32+42=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3+
=1+0¡Á1+2+1¡Á2+3+2¡Á3+
=(1+2+3+4)+( )
¡¡
(2)¹éÄɽáÂÛ£º
12+22+32+¡+n2=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3+¡+n
=1+0¡Á1+2+1¡Á2+3+2¡Á3+¡+n+(nÒ»1)¡Án
=( ) +
= +
=¡Á
(3)ʵ¼ùÓ¦Óãº
ͨ¹ýÒÔÉÏ̽¾¿¹ý³Ì£¬ÎÒÃǾͿÉÒÔËã³öµ±nΪ100ʱ£¬Õý·½ÐÎÍø¸ñÖÐÕý·½ÐεÄ×ܸöÊýÊÇ £®
£¨1+3£©¡Á4
4+3¡Á4
0¡Á1+1¡Á2+2¡Á3+3¡Á4
1+2+3+¡+n
0¡Á1+1¡Á2+2¡Á3++¡+(n£1)¡Án
n(n+1)(n¡ª1)
n(n+1)(2n+1)
4+3¡Á4
0¡Á1+1¡Á2+2¡Á3+3¡Á4
1+2+3+¡+n
0¡Á1+1¡Á2+2¡Á3++¡+(n£1)¡Án
n(n+1)(n¡ª1)
n(n+1)(2n+1)
ÂÔ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿