题目内容
【题目】如图,是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在(1)的前提下,在第二象限内的格点上找一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点的坐标是;
(3)求((2)中△ABC的周长(结果保留根号);
(4)画出((2)中△ABC关于y轴对称的△A'B'C'.
【答案】(1)详见解析;(2)(-1,1);(3)2+2;(4)详见解析.
【解析】
(1)把点A向右平移2个单位,向下平移4个单位就是原点的位置,建立相应的平面直角坐标系;
(2)作线段AB的垂直平分线,寻找满足腰长是无理数的点C即可;
(3)利用格点三角形分别求出三边的长度,即可求出△ABC的周长;
(4)分别找出A、B、C关于y轴的对称点,顺次连接即可.
解:(1)建立平面直角坐标系如图所示;
(2)(-1,1);
(3)AB==2,
BC=AC==,
∴△ABC的周长=2+2;
(4)画出△A'B'C′如图所示.
练习册系列答案
相关题目
【题目】一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克) | … | 50 | 60 | 70 | 80 | … |
销售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?