题目内容

【题目】如图,AB是半圆O的直径,CD是半圆O上的两点,且ODBCODAC交于点E

1)若B=72°,求CAD的度数;

2)若AB=13AC=12,求DE的长.

【答案】(1)∠CAD的度数为36°;(2)DE的长为4.

【解析】试题分析:(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;

(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.

试题解析:(1)∵AB是半圆O的直径,

∴∠ACB=90°,

又∵OD∥BC,

∴∠AEO=90°,即OE⊥AC,∠CAB=90°-∠B=90°-70°=20°,∠AOD=∠B=70°.

∵OA=OD,

∴∠DAO=∠ADO= =55°

∴∠CAD=∠DAO-∠CAB=55°-20°=35°;

(2)在直角△ABC中,BC=

∵OE⊥AC,

∴AE=EC,

又∵OA=OB,

∴OE=BC=

又∵OD=AB=6.5,

∴DE=OD-OE=6.5-=4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网