题目内容
【题目】某工厂现有甲种原料263千克,乙种原料314千克,计划利用这两种原料生产A、B两种产品共100件.生产一件产品所需要的原料及生产成本如下表所示:
甲种原料(单位:千克) | 乙种原料(单位:千克) | 生产成本(单位:元) | |
A产品 | 3 | 2 | 120 |
B产品 | 2.5 | 3.5 | 200 |
(1)该工厂现有的原料能否保证生产需要?若能,有几种生产方案?请你设计出来.
(2)设生产A、B两种产品的总成本为y元,其中生产A产品x件,试写出y与x之间的函数关系,并利用函数的性质说明(1)中哪种生产方案总成本最低?最低生产总成本是多少?
【答案】(1)生产A、B产品分别为24件,76件;25件,75件;26件,74件.(2)17920元.
【解析】
(1)设生产A产品x件,则生产B产品(100﹣x)件.依题意列出方程组求解,由此判断能否保证生产.
(2)设生产A产品x件,总造价是y元,当x取最大值时,总造价最低.
解:(1)假设该厂现有原料能保证生产,且能生产A产品x件,则能生产B产品(100﹣x)件.
根据题意,有,
解得:24≤x≤26,
由题意知,x应为整数,故x=24或x=25或x=26.
此时对应的100﹣x分别为76、75、74.
即该厂现有原料能保证生产,可有三种生产方案:
生产A、B产品分别为24件,76件;25件,75件;26件,74件.
(2)生产A产品x件,则生产B产品(100﹣x)件.根据题意可得
y=120x+200(100﹣x)=﹣80x+20000,
∵﹣80<0,
∴y随x的增大而减小,从而当x=26,即生产A产品26件,B产品74件时,生产总成本最底,最低生产总成本为y=﹣80×26+20000=17920元.
【题目】学完“数据的收集、整理与描述”后,李明对本班期中考试数学成绩(成绩均为整数,满分为150分)作了统计分析(每个人的成绩各不相同,且最低分为50分),绘制成如下频数分布表和频数分布直方图(为避免分数出现在分组的端点处,李明将分点取小数),请你根据图表提供的信息,解答下列问题:
分组 | 频数 | 频率 |
49.5~69.5 | 2 | 0.04 |
69.5~89.5 | 8 | |
89.5~109.5 | 20 | 0.40 |
109.5~129.5 | 0.32 | |
129.5~150.5 | 4 | 0.08 |
合计 | 1 |
(1)分布表中______,______,______;
(2)补全频数分布直方图;
(3)若画该班期中考试数学成绩的扇形统计图,则分数在89.5~109.5之间的扇形圆心角的度数是____;
(4)张亮同学成绩为109分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.