题目内容

【题目】某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A.版画  B.保龄球C.航模 D.园艺种植,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的保龄球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加保龄球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

【答案】
(1)200
(2)解:C项目对应人数为:200﹣20﹣80﹣40=60(人);

补充如图.


(3)解:画树状图得:

∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,

∴P(选中甲、乙)= =


【解析】解:(1)∵A类有20人,所占扇形的圆心角为36°, ∴这次被调查的学生共有:20÷ =200(人);
故答案为:200;
(1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数;(2)首先求得C项目对应人数,即可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网