题目内容
如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=.
(1)求过A.C. D三点的抛物线的解析式;
(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;
(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.
(1)求过A.C. D三点的抛物线的解析式;
(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;
(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.
解:(1)∵四边形ABCD是菱形,
∴AB=AD=CD=BC=5,sinB=sinD=;
Rt△OCD中,OC=CD•sinD=4,OD=3;
OA=AD﹣OD=2,即:
A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0);
设抛物线的解析式为:y=a(x+2)(x﹣3),得:
2×(﹣3)a=4,a=﹣;
∴抛物线:y=﹣x2+x+4.
(2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣;
由(1)得:y2=﹣x2+x+4,则:
,解得:,;
由图可知:当y1<y2时,﹣2<x<5.
(3)∵S△APE=AE•h,
∴当P到直线AB的距离最远时,S△ABC最大;
若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P;
设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时,
﹣x+b=﹣x2+x+4,且△=0;
求得:b=,即直线L:y=﹣x+;
可得点P(,).
由(2)得:E(5,﹣),则直线PE:y=﹣x+9;
则点F(,0),AF=OA+OF=;
∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=.
综上所述,当P(,)时,△PAE的面积最大,为.
∴AB=AD=CD=BC=5,sinB=sinD=;
Rt△OCD中,OC=CD•sinD=4,OD=3;
OA=AD﹣OD=2,即:
A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0);
设抛物线的解析式为:y=a(x+2)(x﹣3),得:
2×(﹣3)a=4,a=﹣;
∴抛物线:y=﹣x2+x+4.
(2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣;
由(1)得:y2=﹣x2+x+4,则:
,解得:,;
由图可知:当y1<y2时,﹣2<x<5.
(3)∵S△APE=AE•h,
∴当P到直线AB的距离最远时,S△ABC最大;
若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P;
设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时,
﹣x+b=﹣x2+x+4,且△=0;
求得:b=,即直线L:y=﹣x+;
可得点P(,).
由(2)得:E(5,﹣),则直线PE:y=﹣x+9;
则点F(,0),AF=OA+OF=;
∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=.
综上所述,当P(,)时,△PAE的面积最大,为.
(1)由菱形ABCD的边长和一角的正弦值,可求出OC.OD.OA的长,进而确定A.C.D三点坐标,通过待定系数法可求出抛物线的解析式.
(2)首先由A.B的坐标确定直线AB的解析式,然后求出直线AB与抛物线解析式的两个交点,然后通过观察图象找出直线y1在抛物线y2图象下方的部分.
(3)该题的关键点是确定点P的位置,△APE的面积最大,那么S△APE=AE×h中h的值最大,即点P离直线AE的距离最远,那么点P为与直线AB平行且与抛物线有且仅有的唯一交点.
(2)首先由A.B的坐标确定直线AB的解析式,然后求出直线AB与抛物线解析式的两个交点,然后通过观察图象找出直线y1在抛物线y2图象下方的部分.
(3)该题的关键点是确定点P的位置,△APE的面积最大,那么S△APE=AE×h中h的值最大,即点P离直线AE的距离最远,那么点P为与直线AB平行且与抛物线有且仅有的唯一交点.
练习册系列答案
相关题目