题目内容
【题目】如图,等边三角形ABC的边长为4, 点O是的中心, ∠FOG = 120°, 绕点O旋转∠FOG,分别交线段AB、BC于D、 E两点,连接DE,给出下列四个结论:①OD= OE;②;③四边形ODBE的面积始终等于;④周长的最小值为6.上述结论中正确的有_________(写出序号)
【答案】①③④
【解析】
连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.
解:连接OB、OC,如图,
∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,
∵点O是△ABC的中心,
∴OB=OC,OB、OC分别平分∠ABC和∠ACB,
∴∠ABO=∠OBC=∠OCB=30°
∴∠BOC=120°,即∠BOE+∠COE=120°,
而∠DOE=120°,即∠BOE+∠BOD=120°,
∴∠BOD=∠COE,
在△BOD和△COE中
∴△BOD≌△COE,
∴BD=CE,OD=OE,所以①正确;
∴S△BOD=S△COE,
∴四边形ODBE的面积=S△OBC==S△ABC==,所以③正确;
作OH⊥DE,如图,则DH=EH,
∵∠DOE=120°,
∴∠ODE=∠OEH=30°,
∴OH=OE,HE=OH=OE,
∴DE=OE,
∴S△ODE=OEOE=OE2,
即S△ODE随OE的变化而变化,
而四边形ODBE的面积为定值,
∴S△ODE≠S△BDE;所以②错误;
∵BD=CE,
∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,
当OE⊥BC时,OE最小,△BDE的周长最小,此时OE= ,
∴△BDE周长的最小值=4+2=6,所以④正确.
故答案为:①③④