题目内容
60°
度.分析:由∠A=30°,根据三角形的内角和定理得∠ABC+∠ACB=180°-30°=150°,而∠XBC+∠XCB=180°-90°=90°,所以∴∠ABX+∠ACX=∠ABC-∠XBC+∠ACB-∠XCB=∠ABC+∠ACB-(∠XBC+∠XCB),即可得到∠ABX+∠ACX度数.
解答:解:∵∠A=30°,
∴∠ABC+∠ACB=180°-30°=150°,
又∵XYZ为直角三角板,即∠YXZ=90,°
∴∠XBC+∠XCB=180°-90°=90°,
∴∠ABX+∠ACX=∠ABC-∠XBC+∠ACB-∠XCB,
=∠ABC+∠ACB-(∠XBC+∠XCB),
=150°-90°,
=60°.
故答案为:60.
∴∠ABC+∠ACB=180°-30°=150°,
又∵XYZ为直角三角板,即∠YXZ=90,°
∴∠XBC+∠XCB=180°-90°=90°,
∴∠ABX+∠ACX=∠ABC-∠XBC+∠ACB-∠XCB,
=∠ABC+∠ACB-(∠XBC+∠XCB),
=150°-90°,
=60°.
故答案为:60.
点评:本题考查了三角形的内角和定理:三角形的三个内角的和为180°.
练习册系列答案
相关题目