题目内容
【题目】已知点E在△ABC内,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.
(1)当α=60°时(如图1),
①判断△ABC的形状,并说明理由;
②求证:BD=AE;
(2)当α=90°时(如图2),求的值.
【答案】(1) ①等边三角形;理由见解析; ②证明见解析;(2)
【解析】
试题分析:(1)①由三角形ABC中有两个60°而求得它为等边三角形;②由△EBD也是等边三角形,连接DC,证得△ABE≌△CBD,在直角三角形中很容易证得结论.
(2)连接DC,证得△ABC∽△EBD,设BD=x在Rt△EBD中DE=2x由相似比即得到比值.
试题解析:(1)①判断:△ABC是等边三角形.
理由:∵∠ABC=∠ACB=60°
∴∠BAC=180°-∠ABC-∠ACB=60°=∠ABC=∠ACB
∴△ABC是等边三角形
②证明:同理△EBD也是等边三角形
连接DC,
则AB=BC,BE=BD,∠ABE=60°-∠EBC=∠CBD
∴△ABE≌△CBD
∴AE=CD,∠AEB=∠CDB=150°
∴∠EDC=150°-∠BDE=90°∠CED=∠BEC-∠BED=90°-60°=30°
在Rt△EDC中,,
∴,即BD=AE.
(2)连接DC,
∵∠ABC=∠EBD=90°,∠ACB=∠EDB=60°
∴△ABC∽△EBD
∴,即
又∵∠ABE=90°-∠EBC=∠CBD
∴△ABE∽△CBD,∠AEB=∠CDB=150°,
∴∠EDC=150°-∠BDE=90°∠CED=∠BEC-∠BED=90°-(90°-∠BDE)=60°
设BD=x在Rt△EBD中DE=2x,BE=
在Rt△EDC中CD=DE×tan60°=2
∴,
即.
练习册系列答案
相关题目