题目内容

【题目】如图,在△ABC中,∠B=24°,∠ACB=104°,AD⊥BC于D,AE平分∠BAC,求∠DAE的度数.

【答案】解:在△ABC中,
∵∠BAC+∠B+∠ACB=180°,∠B=24°,∠ACB=104°,
∴∠BAC=180°﹣∠B﹣∠ACB=180°﹣24°﹣104°=52°.
∵AE平分∠BAC,
∴∠EAC=∠BAC=x52°=26°,
∵AD⊥BC,
∴∠ADC=90°,
∵∠ACB=104°,
∴∠ACD=180°﹣∠ACB=180°﹣104°=76°,
∴∠CAD=14°,
∴∠DAE=∠EAC+∠CAD=40°.
【解析】先根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求出∠EAC的度数,由∠DAE=∠EAC+∠CAD即可得出结论.
【考点精析】解答此题的关键在于理解三角形的内角和外角的相关知识,掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网