题目内容
18、如图,在△ABC中,∠BAC=60°,BD、CE分别是边AC,AB上的高,BD、CE相交于点O,则∠BOC的度数是
120°
.分析:由垂直的定义得到∠ADB=∠BEC=90°,再根据三角形内角和定理得∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,然后根据三角形的外角性质有∠BOC=∠EBD+∠BEO,计算即可得到∠BOC的度数.
解答:解:∵BD、CE分别是边AC,AB上的高,
∴∠ADB=∠BEC=90°,
又∵∠BAC=60°,
∴∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,
∴∠BOC=∠EBD+∠BEO=90°+30°=120°.
故答案为120°.
∴∠ADB=∠BEC=90°,
又∵∠BAC=60°,
∴∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,
∴∠BOC=∠EBD+∠BEO=90°+30°=120°.
故答案为120°.
点评:本题考查了三角形的外角性质:三角形的任一外角等于与之不相邻的两内角的和.也考查了垂直的定义以及三角形内角和定理.
练习册系列答案
相关题目