题目内容
如图,在△ABC中,点Q、P分别是边AC、BC上的点,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,且PR=PS,则下列结论:①AP平分∠BAC;②QP∥AB;③AS=AR;④△BPR≌△QSP,其中正确的有( )A.①②③
B.②③④
C.①②④
D.①③④
【答案】分析:根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠APQ=∠PAR,然后根据内错角相等两直线平行可得QP∥AB,从而判断出②正确,然后证明出△APR与△APS全等,根据全等三角形对应边相等即可得到③正确,④两三角形只能确定一直角边相等,已知角相等,其他条件都无法确定,所以不一定正确.
解答:解:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,
∴点P在∠BAC的平分线上,
即AP平分∠BAC,故①正确;
∴∠PAR=∠PAQ,
∵AQ=PQ,
∴∠APQ=∠PAQ,
∴∠APQ=∠PAR,
∴QP∥AB,故②正确;
在△APR与△APS中,,
∴△APR≌△APS(HL),
∴AR=AS,故③正确;
△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90°,其他条件不容易得到,所以,不一定全等.
故④错误.
综上所述,①②③正确.
故选A.
点评:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.
解答:解:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,
∴点P在∠BAC的平分线上,
即AP平分∠BAC,故①正确;
∴∠PAR=∠PAQ,
∵AQ=PQ,
∴∠APQ=∠PAQ,
∴∠APQ=∠PAR,
∴QP∥AB,故②正确;
在△APR与△APS中,,
∴△APR≌△APS(HL),
∴AR=AS,故③正确;
△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90°,其他条件不容易得到,所以,不一定全等.
故④错误.
综上所述,①②③正确.
故选A.
点评:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.
练习册系列答案
相关题目