题目内容

【题目】如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.

(1)求∠BDC的度数;
(2)四边形ABCD的面积.

【答案】
(1)解:∵AB=AD=8cm,∠A=60°,

∴△ABD是等边三角形,

∵∠ADC=150°

∴∠BDC=150°﹣60°=90°


(2)解:∵△ABD为正三角形,AB=8cm,

∴其面积为 × ×AB×AD=16

∵BC+CD=32﹣8﹣8=16,且BD=8,BD2+CD2=BC2

解得BC=10,CD=6,

∴直角△BCD的面积= ×6×8=24,

故四边形ABCD的面积为24+16


【解析】(1)先根据题意得出△ABD是等边三角形,△BCD是直角三角形,进而可求出BDC的度数;(2)根据四边形周长计算BC,CD,即可求△BCD的面积,正△ABD的面积根据计算公式计算,即可求得四边形ABCD的面积为两个三角形的面积的和.
【考点精析】利用勾股定理的概念对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

【题目】已知∠AOB=90°是锐角,ON平分OM平分∠AOB

1如图1=30°,求的度数?

2若射线OC绕着点O运动到∠AOB的内部如图2,在1的条件下求的度数;

3若∠AOB=90°≤180°),= 90°,请用含有的式子直接表示上述两种情况的度数.

【答案】160°;(230°;(3①∠MON),;②∠MON).

【解析】试题分析:1)由于∠AOB=90°∠BOC=30°OM平分∠AOBON平分∠BOC,所以可以求得∠MOB和∠NOB的度数,进而求得∠MON的度数;(2)类比(1)的方法求解即可;3)结合(1)(2)题的计算方法求解即可.

试题解析:

1OM平分∠AOBON平分∠BOC

∴∠BOMAOB,∠BONBOC

∵∠AOB90°,∠BOC30°

∴∠BOM×90°45°,∠BON×30°15°

∴∠MON=∠BOM+∠BON45°15°60°

2)由(1)可知:∠BOM45°,∠BON15°

∴∠MON=∠BOM-∠BON45°15°30°

3)①∠MON),②∠MON).

点睛:本题主要考查学生角平分线的定义及角的计算的理解和掌握,在解决角与角之间的关系时,要充分利用已知条件和图中的隐含条件.

型】解答
束】
27

【题目】1)已知线段AB=8cm,在线段AB上有一点C,且BC=4cmM为线段AC的中点

求线段AM的长?

若点C在线段AB的延长线上,AM的长度又是多少呢?

2如图,AD=DBEBC的中点,BE=AC=2cm,求DE的长.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网