题目内容
如图,已知AD既是△ABC的中线,又是角平分线,请判断:
(1)△ABC的形状;
(2)AD是否过△ABC外接圆的圆心O,⊙O是否是△ABC的外接圆,并证明你的结论.
证明见解析.
【解析】
试题分析:(1)过点D作DE⊥AB于点E,DF⊥AC于点F,根据HL定理可得出△BDE≌△CDF,进而得出结论;
(2)根据等腰三角形三线合一的性质可知AD⊥BC,再由BD=CD,可知AD过圆心O,故可得出结论.
试题解析:(1)答:△ABC是等腰三角形.
证明:过点D作DE⊥AB于点E,DF⊥AC于点F.
∵AD是角平分线,
∴DE=DF.
又∵AD是△ABC的中线,
∴BD=CD,
在Rt△BDE与Rt△CDF中,
,
∴△BDE≌△CDF(HL).
∴∠B=∠C,
∴AB=AC,即△ABC是等腰三角形;
(2)答:AD过△ABC的外接圆圆心O,⊙O是△ABC的外接圆.
证明:∵AB=AC,AD是角平分线,
∴AD⊥BC,
又∵BD=CD,
∴AD过圆心O.
作边AB的中垂线交AD于点O,交AB于点M,则点O就是△ABC的外接圆圆心,
∴⊙O是△ABC的外接圆.
考点:1.三角形的外接圆与外心;2.全等三角形的判定与性质.
练习册系列答案
相关题目