题目内容
【题目】如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AC相切于点P.
(1)求证:BP平分∠ABC;
(2)若PC=1,AP=3,求BC的长.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)连接OP,首先证明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;
(2)作PH⊥AB于H.首先证明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解决问题.
试题解析:
(1)连接OP,
∵AC是⊙O的切线,
∴OP⊥AC,
∴∠APO=∠ACB=90°,
∴OP∥BC,
∴∠OPB=∠PBC,
∵OP=OB,
∴∠OPB=∠OBP,
∴∠PBC=∠OBP,
∴BP平分∠ABC;
(2)作PH⊥AB于H.则∠AHP=∠BHP=∠ACB=90°,
又∵∠PBC=∠OBP,PB=PB,
∴△PBC≌△PBH ,
∴PC=PH=1,BC=BH,
在Rt△APH中,AH=,
在Rt△ACB中,AC2+BC2=AB2
∴(AP+PC)2+BC2=(AH+HB)2,
即42+BC2=(+BC)2,
解得.
练习册系列答案
相关题目