题目内容

如图,直线l的解析式为y=-
4
3
x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤3)
(1)求A、B两点的坐标;
(2)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S,试探究S与t之间的函数关系;
(3)当S=2时,是否存在点R,使△RNM△AOB?若存在,求出R的坐标;若不存在,请说明理由.
(1)当y=0时,0=-
4
3
x+4
解得x=3,
即A(3,0),
当x=0时,y=4
即B(0,4);

(2)Ⅰ当点P在直线AB左边时,
∵矩形OMPN,
∴NP=OM=t
∵ml
∴△OMN△OAB
OM
OA
=
ON
OB

t
3
=
ON
4

∴PM=ON=
4
3
t,
∴s1=
1
2
PN•PM=
1
2
•t•
4
3
t=
2
3
t2(0<t≤
3
2
),

Ⅱ当点P在直线AB右边时,
∵OM=t,
∴AM=3-t,
∴ME=
4
3
(3-t),
PE=
4
3
t-
4
3
(3-t)=
8
3
t-4,
PF=
3
4
-(
8
3
t-4)=2t-3,
∴s2=
1
2
PN•PM-
1
2
PE•PF,
=
1
2
t•
4
3
t-
1
2
8
3
t-4)(2t-3)=-2t2+8t-6(
3
2
<t≤3),
综上所述:s1=
2
3
t2(0<t≤
3
2
),或s2=-2t2+8t-6(
3
2
<t≤3);

(3)当s1=
2
3
t2=2时,t=
3
3
2
,舍去,
当s2=-2t2+8t-6=2时,t1=t2=2,
此时M(2,0),N(0,
8
3
),
∴存在R1和R2使△RNM△AOB,
∴∠RNM=∠AOB=90°,∠R1MN=∠ABO=∠MNO,
∴R1My轴,
∴R1H1=OM=2,
∴NH1=2×
3
4
=
3
2

∴OH1=
8
3
+
3
2
=
25
6

∴R1(2,
25
6
),
∴R2H2=R1H1=2,NH2=NH1=
3
2

∴OH2=
8
3
-
3
2
=
7
6

∴R2(-2,
7
6
),
综上所述:R1(2,
25
6
)或R2(-2,
7
6
).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网