题目内容
已知关于x的一元二次方程mx2+nx+k=0(m≠0)有两个实数根,则下列关于判别式n2-4mk的判断正确的是
- A.n2-4mk<0
- B.n2-4mk=0
- C.n2-4mk>0
- D.n2-4mk≥0
D
分析:根据一元二次方程ax2+bx+c=0,(a≠0)根的判别式△=b2-4ac直接得到答案.
解答:∵关于x的一元二次方程mx2+nx+k=0(m≠0)有两个实数根,
∴△=n2-4mk≥0,
故选D.
点评:本题考查了一元二次方程ax2+bx+c=0,(a≠0)根的判别式△=b2-4ac:当△>0,原方程有两个不相等的实数根;当△=0,原方程有两个相等的实数根;当△<0,原方程没有实数根.
分析:根据一元二次方程ax2+bx+c=0,(a≠0)根的判别式△=b2-4ac直接得到答案.
解答:∵关于x的一元二次方程mx2+nx+k=0(m≠0)有两个实数根,
∴△=n2-4mk≥0,
故选D.
点评:本题考查了一元二次方程ax2+bx+c=0,(a≠0)根的判别式△=b2-4ac:当△>0,原方程有两个不相等的实数根;当△=0,原方程有两个相等的实数根;当△<0,原方程没有实数根.
练习册系列答案
相关题目
已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2,
+
=1,则k的值是( )
1 |
x1 |
1 |
x2 |
A、8 | B、-7 | C、6 | D、5 |