题目内容
【题目】如图,△ABC的面积为6,AC3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的处,P为直线AD上的任意一点,则线段BP的最短长度为_____________.
【答案】4
【解析】
过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是4.
如图:
过B作BN⊥AC于N,BM⊥AD于M,
∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面积等于6,边AC=3,
∴×AC×BN=6,
∴BN=4,
∴BM=4,
即点B到AD的最短距离是4,
∴BP的长不小于4,
故答案为:4.
练习册系列答案
相关题目