题目内容

如图,在平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6),将△BCD沿BD折叠(D点在OC边上),使C点落在DA边的E点上,并将△BAE沿BE折叠,恰好使点A落在BD边的F点上.

(1)求BC的长,并求折痕BD所在直线的函数解析式;
(2)过点F作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B,H, D三点,求抛物线解析式;
(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B, D点),过点P作PN⊥BC,分别交BC 和 BD于点N, M,是否存在这样的点P,使如果存在,求出点P的坐标;如果不存在,请说明理由.
解:(1)由翻折可知:△BCD≌△BED,∴∠CBD=∠DBE。
又∵△ABE≌△FBE,∴∠DBE=∠ABE。
又∵四边形OCBA为矩形,∴∠CBD=∠DBE=∠ABE=30°。
在Rt△DOE中,∠ODE=60°,∴DE=CD=2OD。
∵OC=OD+CD=6,∴OD+2OD=6,∴OD=2,D(0,2)。∴CD=4。
在Rt△CDB中,BC=CD•tan60°=4,∴B(4,6)。
设直线BD的解析式为y=kx+b,由题意得:,解得
∴直线BD的解析式为:
(2)在Rt△FGE中,∠FEG=60°,FE=AE.
由(1)易得:OE=2,∴FE=AE=2
∴FG=3,GE=。∴OG=
∵H是FG的中点,∴H()。
∵抛物线经过B、H、D三点,
,解得
∴抛物线解析式为
(3)存在。
∵P在抛物线上,∴设P(x,),M(x,),N(x,6)。
∵SBNM=SBPM,∴PM=MN.即:
整理得:,解得:x=2或x=4
当x=2时,
当x=4时,,与点B重合,不符合题意,舍去。
∴P(2,2)。
∴存在点P,使SBNM=SBPM,点P的坐标为(2,2)。

试题分析:(1)首先由折叠性质得到∠CBD=∠DBE=∠ABE=30°,然后解直角三角形得到点D、点B的坐标,最后用待定系数法求出直线BD的解析式;
(2)点B、D坐标已经求出,关键是求出点H的坐标.在Rt△FGE中,解直角三角形求出点H的坐标,再利用待定系数法求出抛物线的解析式。
(3)由SBNM=SBPM,且这两个三角形等高,所以得到PM=MN.由此结论,列出方程求出点P的坐标。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网