题目内容
【题目】如图,在△ABC中,点O是AC边上的一点.过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于F.
(1)求证:EO=FO;(2)若CE=4,CF=3,你还能得到那些结论?
【答案】(1)证明见解析;(2)OE=OF=OC=0.5EF=2.5.
【解析】
(1)利用角平分线加平行线得等腰三角形即可解题;(2)利用角平分线证明∠ECF=90°,勾股定理即可求出斜边的长.
解:(1)如下图,
∵CE是∠ACB的平分线,
∴∠1=∠2,
∵MN∥BC,
∴∠1=∠3,
∴∠2=∠3,
∴OE=OC,同理可得OF=OC,
∴OE=OF;
(2)∵CE是∠ACB的平分线,
∴∠1=∠2,
∵CF是∠OCD的平分线,
∴∠4=∠5,
∴∠ECF=90°,
在Rt△ECF中,由勾股定理得EF=.
∴OE=OF=OC=EF=2.5.
练习册系列答案
相关题目