题目内容
【题目】如图,在△ABC中,D是AB的中点,E是CD的中点, 过点C作CF//AB交AE的延长线于点F,连接BF.
(1) 求证:DB=CF;
(2) 如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
【答案】(1)证明见解析;(2)四边形BDCF是矩形,理由见解析.
【解析】试题分析:(1)根据CF∥AB,可知∠DAE=∠CFE,得出△ADE≌△FCE,再根据等量代换可知DB=CF,
(2)根据DB=CF,DB∥CF,可知四边形BDCF为平行四边形,再根据AC=BC,AD=DB,得出四边形BDCF是矩形.
试题解析:(1)证明:∵CF∥AB,
∴∠DAE=∠CFE,
在△ADE和△FCE中,
∴△ADE≌△FCE(AAS),
∴AD=CF,
∵AD=DB,
∴DB=CF;
(2)四边形BDCF是矩形,
证明:∵DB=CF,DB∥CF,
∴四边形BDCF为平行四边形,
∵AC=BC,AD=DB,
∴CD⊥AB,
∴平行四边形BDCF是矩形.
练习册系列答案
相关题目