题目内容
【题目】如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.
(1)求证:BD=AE;
(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.
【答案】
(1)证明:∵△ABC、△DCE均是等边三角形,
∴AC=BC,DC=DE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
在△DCB和△ACE中,
,
∴△DCB≌△ACE(SAS),
∴BD=AE
(2)解:△CMN为等边三角形,理由如下:
由(1)可知:△ACE≌△DCB,
∴∠CAE=∠CDB,即∠CAM=∠CBN,
∵AC=BC,AM=BN,
在△ACM和△BCN中,
,
∴△ACM≌△BCN(SAS),
∴CM=CN,∠ACM=∠BCN,
∵∠ACB=60°即∠BCN+∠ACN=60°,
∴∠ACM+∠ACN=60°即∠MCN=60°,
∴△CMN为等边三角形
【解析】(1)由等边三角形的性质,可证明△DCB≌△ACE,可得到BD=AE;(2)结合(1)中△DCB≌△ACE,可证明△ACM≌△BCN,进一步可得到∠MCN=60°且CM=CN,可判断△CMN为等边三角形.
练习册系列答案
相关题目