ÌâÄ¿ÄÚÈÝ
Èçͼ£¬¾ØÐÎABCDÖУ¬AB=6cm£¬BC=12cm£¬µãP´ÓA¿ªÊ¼ÑØAB±ßÏòµãBÒÔ1ÀåÃ×/ÃëµÄËÙ¶ÈÒƶ¯£¬µãQ´ÓµãB¿ªÊ¼ÑØBC±ßÏòµãCÒÔ2ÀåÃ×/ÃëµÄËÙ¶ÈÒƶ¯£¬µ±µãPµ½´ïBµã»òµãQµ½´ïCµãʱ£¬Á½µãÍ£Ö¹Òƶ¯£¬Èç¹ûP¡¢Q·Ö±ðÊÇ´ÓA¡¢Bͬʱ³ö·¢£¬tÃëÖÓºó£¬
£¨1£©Çó³ö¡÷PBQµÄÃæ»ý£»
£¨2£©µ±¡÷PBQµÄÃæ»ýµÈÓÚ8ƽ·½ÀåÃ×ʱ£¬ÇótµÄÖµ£®
£¨3£©ÊÇ·ñ´æÔÚ¡÷PBQµÄÃæ»ýµÈÓÚ10ƽ·½ÀåÃ×£¬Èô´æÔÚ£¬Çó³ötµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨1£©Çó³ö¡÷PBQµÄÃæ»ý£»
£¨2£©µ±¡÷PBQµÄÃæ»ýµÈÓÚ8ƽ·½ÀåÃ×ʱ£¬ÇótµÄÖµ£®
£¨3£©ÊÇ·ñ´æÔÚ¡÷PBQµÄÃæ»ýµÈÓÚ10ƽ·½ÀåÃ×£¬Èô´æÔÚ£¬Çó³ötµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¡÷PBQµÄÃæ»ýΪ
¡ÁBP¡ÁBQ£¬ÆäÖÐBP=AB-AP=6-t£¬BQ=2t£¬·Ö±ðÓùØÓÚtµÄ´úÊýʽ´úÈëÃæ»ý¹«Ê½¼´¿É£»
£¨2£©ÁîÓÉ£¨1£©Çó³öµÄÃæ»ý¹«Ê½µÄ´úÊýʽ=8£¬½â¸Ã·½³ÌµÃ³ötµÄÖµ£»
£¨3£©¼ÙÉè´æÔÚʹ¡÷PBQµÄÃæ»ýµÈÓÚ10ƽ·½ÀåÃ×£¬Á1£©µÄ´úÊýʽ=10£¬¿´¸Ã·½³ÌÊÇ·ñÓиù£¬ÈôÓÐÔòÖ¤Ã÷´æÔÚ£¬ÈôÎÞÔò²»´æÔÚ£®
1 |
2 |
£¨2£©ÁîÓÉ£¨1£©Çó³öµÄÃæ»ý¹«Ê½µÄ´úÊýʽ=8£¬½â¸Ã·½³ÌµÃ³ötµÄÖµ£»
£¨3£©¼ÙÉè´æÔÚʹ¡÷PBQµÄÃæ»ýµÈÓÚ10ƽ·½ÀåÃ×£¬Á1£©µÄ´úÊýʽ=10£¬¿´¸Ã·½³ÌÊÇ·ñÓиù£¬ÈôÓÐÔòÖ¤Ã÷´æÔÚ£¬ÈôÎÞÔò²»´æÔÚ£®
½â´ð£º½â£º£¨1£©ÒÀÌâÒ⣺AP=t£¬BQ=2t£¬BP=6-t
ËùÒÔ¡÷PBQµÄÃæ»ýΪ£º
BP¡ÁBQ=
(6-t)2t=-t2+6t£»
£¨2£©ÒÀÌâÒ⣺-t2+6t=8£¬¼´t2-6t+8=0
½âÖ®µÃ£ºt1=2£¬t2=4£¬
µ±¡÷PBQµÄÃæ»ýµÈÓÚ8ƽ·½ÀåÃ×ʱ£¬tµÄֵΪ2»ò4£»
£¨3£©²»´æÔÚ£»
¼ÙÉè´æÔÚ¡÷PBQµÄÃæ»ýµÈÓÚ10ƽ·½ÀåÃ×£¬
Ôò-t2+6t=10£¬¼´t2-6t+10=0£¬¡÷=£¨-6£©2-4¡Á10=-4£¼0£¬¹Ê·½³ÌÎÞʵÊý¸ù£¬
¡à²»´æÔÚ¡÷PBQµÄÃæ»ýµÈÓÚ10ƽ·½ÀåÃ×£®
ËùÒÔ¡÷PBQµÄÃæ»ýΪ£º
1 |
2 |
1 |
2 |
£¨2£©ÒÀÌâÒ⣺-t2+6t=8£¬¼´t2-6t+8=0
½âÖ®µÃ£ºt1=2£¬t2=4£¬
µ±¡÷PBQµÄÃæ»ýµÈÓÚ8ƽ·½ÀåÃ×ʱ£¬tµÄֵΪ2»ò4£»
£¨3£©²»´æÔÚ£»
¼ÙÉè´æÔÚ¡÷PBQµÄÃæ»ýµÈÓÚ10ƽ·½ÀåÃ×£¬
Ôò-t2+6t=10£¬¼´t2-6t+10=0£¬¡÷=£¨-6£©2-4¡Á10=-4£¼0£¬¹Ê·½³ÌÎÞʵÊý¸ù£¬
¡à²»´æÔÚ¡÷PBQµÄÃæ»ýµÈÓÚ10ƽ·½ÀåÃ×£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµÄÊÇÒ»Ôª¶þ´Î·½³ÌµÄÓ¦Óã¬Áгö¹ØÓÚÈý½ÇÐÎÃæ»ýµÄ¹Øϵʽ£¬¶ÔÓÚÃæ»ýΪ8ƽ·½Ã×»ò10ƽ·½Ã×ʱ£¬Áгö·½³ÌÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èçͼ£¬¾ØÐÎABCDÖУ¬AD=a£¬AB=b£¬ÒªÊ¹BC±ßÉÏÖÁÉÙ´æÔÚÒ»µãP£¬Ê¹¡÷ABP¡¢¡÷APD¡¢¡÷CDPÁ½Á½ÏàËÆ£¬Ôòa¡¢b¼äµÄ¹Øϵʽһ¶¨Âú×㣨¡¡¡¡£©
A¡¢a¡Ý
| ||
B¡¢a¡Ýb | ||
C¡¢a¡Ý
| ||
D¡¢a¡Ý2b |