题目内容
【题目】(1)问题发现
如图1,点E.F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;
(2)类比引申
如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E.F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系 时,仍有EF=BE+DF;
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC满足的等量关系,并写出推理过程。
【答案】(1)详见解析;(2)详见解析;(3)详见解析.
【解析】试题分析:(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFG≌△AFE,根据全等三角形的性质得出EF=FG,即可得出答案;
(2)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFE≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;
(3)把△ACE旋转到ABF的位置,连接DF,证明△AFE≌△AFG(SAS),则EF=FG,∠C=∠ABF=45°,△BDF是直角三角形,根据勾股定理即可作出判断.
试题解析:(1)理由是:如图1,
∵AB=AD,
∴把△ABE绕点A逆时针旋转90至△ADG,可使AB与AD重合,如图1,
∵∠ADC=∠B=90,
∴∠FDG=180,点F. D. G共线,
则∠DAG=∠BAE,AE=AG,
∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=9045=45=∠EAF,
即∠EAF=∠FAG,
在△EAF和△GAF中,
AF=AF,∠EAF=∠GAF,AE=AG,
∴△AFG≌△AFE(SAS),
∴EF=FG=BE+DF;
(2)∠B+∠D=180时,EF=BE+DF;
∵AB=AD,
∴把△ABE绕点A逆时针旋转90至△ADG,可使AB与AD重合,如图2,
∴∠BAE=∠DAG,
∵∠BAD=90,∠EAF=45,
∴∠BAE+∠DAF=45,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180,
∴∠FDG=180,点F. D. G共线,
在△AFE和△AFG中,
AE=AG,∠FAE=∠FAG,AF=AF,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF,
故答案为:∠B+∠ADC=180;
(3)BD2+CE2=DE2.
理由是:把△ACE旋转到ABF的位置,连接DF,
则∠FAB=∠CAE.
∵∠BAC=90,∠DAE=45,
∴∠BAD+∠CAE=45,
又∵∠FAB=∠CAE,
∴∠FAD=∠DAE=45,
则在△ADF和△ADE中,
AD=AD,∠FAD=∠DAE,AF=AE,
∴△ADF≌△ADE,
∴DF=DE,∠C=∠ABF=45,
∴∠BDF=90,
∴△BDF是直角三角形,
∴BD2+BF2=DF2,
∴BD2+CE2=DE2.