题目内容
在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(2)假如你去摸一次,你摸到白球的概率是
(3)试估算口袋中黑、白两种颜色的球各有多少只?
(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.
分析:本题要先根据已知条件求出摸到白球的平均频率,再计算即可.
解答:解:(1)当n很大时,摸到白球的频率将会接近(0.58+0.64+0.58+0.59+0.605+0.601)÷6≈0.60;
(2)摸到白球的概率是0.60,摸到黑球的概率是1-0.60=0.4;
(3)白球有20×O.60=12(只),黑球有20-12=8(只);
(4)把a个黑球装入口袋中,将黑球、白球混合搅匀,做摸球实验,随机摸出一个球记下颜色,再放回口袋中,不断重复,可得到摸到黑球的频率P,
由于黑球有a个,则设白球的数量为b,得
=P,
解得:b=
a.
(2)摸到白球的概率是0.60,摸到黑球的概率是1-0.60=0.4;
(3)白球有20×O.60=12(只),黑球有20-12=8(只);
(4)把a个黑球装入口袋中,将黑球、白球混合搅匀,做摸球实验,随机摸出一个球记下颜色,再放回口袋中,不断重复,可得到摸到黑球的频率P,
由于黑球有a个,则设白球的数量为b,得
a |
a+b |
解得:b=
1-P |
P |
点评:考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.部分数目=总体数目乘以相应概率.
练习册系列答案
相关题目
在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 | ||
摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 | ||
摸到白球的频率
|
0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(2)假如你去摸一次,你摸到白球的概率是
(3)试估算口袋中黑、白两种颜色的球有多少只.