题目内容
【题目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,连接DH,求证:
(1)EH=FH;
(2)∠CAB=2∠CDH.
【答案】
(1)证明:∵∠ACB=90°,CD⊥AB于D,
∴∠CAE+∠AEC=∠DAF+∠AFD=90°,
∴∠AFD=∠AEC,
∵∠AFD=∠CFE,
∴∠CFE=∠CEF,
∴CF=CE,
∵CH⊥EF,
∴HE=HF
(2)证明:∵∠ADF=∠CHF=90°,∠AFD=∠CFH,
∴△ADF∽△CFH,
∴ ,
∵∠AFC=∠DFH,
∴△AFC∽△DFH,
∴∠CAF=∠CDH,
∵∠CAD=2∠CAF,
∴∠CAB=2∠CDH.
【解析】(1)根据余角的性质得到∠AFD=∠AEC,证得∠CFE=∠CEF,得到CF=CE,根据等腰三角形的性质即可得到结论.(2)由于∠ADF=∠CHF=90°,∠AFD=∠CFH,得到△ADF∽△CFH,根据相似三角形的性质得到 ,由于∠AFC=∠DFH,得到△AFC∽△DFH,根据相似三角形的性质得到∠CAF=∠CDH,等量代换即可得到结论.
【考点精析】解答此题的关键在于理解相似三角形的判定与性质的相关知识,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目