题目内容
【题目】如图,在平面直角坐标系中,直线,与反比例函数在第一象限内的图象相交于点
(1)求该反比例函数的表达式;
(2)将直线沿轴向上平移个单位后与反比例函数在第一象限内的图象相交于点,与轴交于点,若,连接,.
①求的值;
②判断与的位置关系,并说明理由;
(3)在(2)的条件下,在射线上有一点(不与重合),使,求点的坐标.
【答案】(1);(2)①;②;(3).
【解析】
(1)先确定出点A坐标,再用待定系数法求出反比例函数解析式;
(2)①先求出点B坐标即可得出结论;②利用勾股定理的逆定理即可判断;
(3)利用相似三角形的性质得出AP,进而求出OP,再求出∠AOH=30°,最后用含30°的直角三角形的性质即可得出结论.
解:(1)∵点在直线,
∴,
∴,
∴点,
∵点在反比例函数上,
∴,
∴;
(2)①作轴于,轴于.
∴,
∵,
∴,
∴,
∴,
∴,
∴,
∴,
∴设的解析式为,
∵经过点,
∴.
∴直线的解析式为,
∴.
②∵,,
∴,,,
∴,
∴,
∴.
(3)如图
∵,,
由(2)知,,
即,
∴,
∵,
∴,
过点作轴于
∵,
∴,,
在中,
∴,
∴
过点作轴于,
在中,,,
∴,,
∴.
【题目】射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):
甲:8,8,7,8,9
乙:5,9,7,10,9
教练根据他们的成绩绘制了如下尚不完整的统计图表:
选手 | 平均数 | 众数 | 中位数 | 方差 |
甲 | 8 | b | 8 | 0.4 |
乙 | α | 9 | c | 3.2 |
根据以上信息,请解答下面的问题:
(1)α= ,b= ,c= ;
(2)完成图中表示乙成绩变化情况的折线;
(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?
(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会 .(填“变大”、“变小”或“不变”)