题目内容
【题目】如图,在中,,,,,的平分线相交于点E,过点E作交AC于点F,则;
【答案】
【解析】
过E作EG∥AB,交AC于G,易得AG=EG,EF=CF,依据△ABC∽△GEF,即可得到EG:EF:GF=3:4:5,故设EG=3k=AG,则EF=4k=CF,FG=5k,根据AC=10,可得3k+5k+4k=10,即k=,进而得出EF=4k=.
过E作EG∥AB,交AC于G,则∠BAE=∠AEG,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
∴∠CAE=∠AEG,
∴AG=EG,
同理可得,EF=CF,
∵AB∥GE,BC∥EF,
∴∠BAC=∠EGF,∠BCA=∠EFG,
∴△ABC∽△GEF,
∵∠ABC=90°,AB=6,BC=8,
∴AC=10,
∴EG:EF:GF=AB:BC:AC=3:4:5,
设EG=3k=AG,则EF=4k=CF,FG=5k,
∵AC=10,
∴3k+5k+4k=10,
∴k=,
∴EF=4k=.
故答案是:.
练习册系列答案
相关题目