题目内容
【题目】探究:如图①, ,试说明.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.
解: ∵.(已知)
∴ .( )
同理可证, .
∵ ,
∴.( )
应用:如图②, ,点在之间,与交于点,与交于点.若, ,则的大小为_____________度.
拓展:如图③,直线在直线之间,且,点分别在直线上,点是直线上的一个动点,且不在直线上,连结.若 ,则 =________度.
【答案】探究:两直线平行,内错角相等;等量代换;应用:60;拓展:70或290.
【解析】
探究:利用平行线的性质解决问题即可;
应用:利用探究中的结论解决问题即可;
拓展:分两种情形,画出图形分别求解即可.
解:探究::∵AB∥CD,
∴∠B=∠1(两直线平行,内错角相等),
同理可证,∠F=∠2,
∵∠BCF=∠1+∠2,
∴∠BCF=∠B+∠F.(等量代换),
故答案为:两直线平行,内错角相等;等量代换.
应用:由探究可知:∠EFG=∠AMF+∠CNF,
∵∠EFG=115°,∠AMF=∠EMB=55°,
∴∠DNG=∠CNF=∠EFG-∠AMF=115°55°=60°,
故答案为:60;
拓展:如图,
当点Q在直线GH的右侧时,
∠AGQ+∠EHQ,
=180°-∠BGQ+180°-∠FHQ,
=360°-(∠BGQ+∠FHQ),
=360°-∠GQH,
=360°70°,
=290°,
当点Q′在直线GH的左侧时,∠AGQ′+∠EHQ′=∠GQ′H=70°,
故答案为:70或290.
练习册系列答案
相关题目