题目内容
【题目】如图,△ADF≌△CBE,且点E,B,D,F在一条直线上.试判断:
(1)AD与BC的位置关系(并加以说明);
(2)BF与DE的数量关系,并说明理由.
【答案】(1)AD∥BC;(2)BF=DE
【解析】试题分析:(1)由“已知全等三角形的对应角相等”推知∠ADF=∠CBE,则等角的补角相等,即内错角∠ADB=∠CBD,则易证得AD∥BC;
(2)由“已知全等三角形的对应边相等”推知BE=DF,则根据等式的性质得到BE+BD=DF+BD,即BF=DE.
试题解析: (1)AD∥BC.理由如下:
∵△ADF≌△CBE,
∴∠ADF=∠CBE,
∴∠ADB=∠CBD,
∴AD∥BC;
(2)BF=DE.理由如下:
∵△ADF≌△CBE,
∴BE=DF,
∴BE+BD=DF+BD,即BF=DE.
练习册系列答案
相关题目