题目内容
【题目】情景观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.
①写出图1中所有的全等三角形 ;
②线段AF与线段CE的数量关系是 ,并写出证明过程.
问题探究:
如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.
求证:AE=2CD.
【答案】①△ABE≌△ACE,△ADF≌△CDB;②AF=2CE,详见解析.
【解析】试题分析:
情景观察:①由AB=AC,AE⊥BC,AE是公共边,根据“HL”即可判断△ABE≌△ACE;根据等腰三角形“三线合一”和∠A=45°,可求得∠DAF=22.5°,利用等边对等角和三角形内角和定理求得∠B=67.5°,在Rt△BDC中即可求得∠DCB=22.5°,在Rt△ADC中由∠A=45°可得AD=CD,由“ASA”即可得出△ADF≌△CDB;
②由①中△ADF≌△CDB得出AF=BC,再由“三线合一”得出BC=2CE,等量代换即可得出结论;
问题探究:延长AB、CD交于点G,由ASA证明△ADC≌△ADG,得出对应边相等CD=GD,即CG=2CD,证出∠BAE=∠BCG,由ASA证明△ABE≌△CBG,得出AE=CG=2CD即可.
试题解析:
解:①图1中所有的全等三角形为△ABE≌△ACE,△ADF≌△CDB;
故答案为:△ABE≌△ACE,△ADF≌△CDB;
②线段AF与线段CE的数量关系是:AF=2CE;
故答案为:AF=2CE.
证明:∵△BCD≌△FAD,
∴AF=BC,
∵AB=AC,AE⊥BC,
∴BC=2CE,
∴AF=2CE;
问题探究:
证明:延长AB、CD交于点G,如图2所示:
∵AD平分∠BAC,
∴∠CAD=∠GAD,
∵AD⊥CD,
∴∠ADC=∠ADG=90°,
在△ADC和△ADG中,
,
∴△ADC≌△ADG(ASA),
∴CD=GD,即CG=2CD,
∵∠BAC=45°,AB=BC,
∴∠ABC=90°,
∴∠CBG=90°,
∴∠G+∠BCG=90°,
∵∠G+∠BAE=90°,
∴∠BAE=∠BCG,
在△ABE和△CBG中,
,
∴△ABE≌△CBG(ASA),
∴AE=CG=2CD.