题目内容
【题目】在△ABC中,∠BAC=90°,AB=AC.点D从点B出发沿射线BC移动,以AD为边在AB的右侧作△ADE,且∠DAE=90°,AD=AE.连接CE.
(1)如图1,若点D在BC边上,则∠BCE= °;
(2)如图2,若点D在BC的延长线上运动.
①∠BCE的度数是否发生变化?请说明理由;
②若BC=3,CD=6,则△ADE的面积为 .
【答案】(1)∠BCE=90°;(2)①∠BCE的度数不变,为90°;理由见解析;②△ADE的面积为.
【解析】
(1)由△ABC和△ADE都是等腰直角三角形可得,AB=AC,AD=AE,∠BAC=∠DAE=90°,则有∠BAD=∠CAE,从而可证到△ACE≌△ABD;则∠ACE=∠ABD=45°,从而得到∠BCE=∠BCA+∠ACE=90°;
(2)①由△ABC和△ADE都是等腰直角三角形可得,AB=AC,AD=AE,∠BAC=∠DAE=90°,则有∠BAD=∠CAE,从而可证到△ACE≌△ABD;则∠ACE=∠ABD=45°,从而得到∠BCE=∠BCA+∠ACE=90°;
②得出BD,由△ACE≌△ABD可得CE=BD,运用三角形面积公式解答.
解:(1)∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∴∠BAD=∠CAE.
在△ACE和△ABD中,
,
∴△ACE≌△ABD(SAS);
∴∠ACE=∠ABD=45°,
∴∠BCE=∠BCA+∠ACE=45°+45°=90°;
故答案为:90;
(2)①不发生变化.
∵AB=AC,∠BAC=90°
∴∠ABC=∠ACB=45°,
∵∠BAC=∠DAE=90°
∴∠BAC+∠DAC=∠DAE+∠DAC
∴∠BAD=∠CAE,
在△ACE和△ABD中
∴△ACE≌△ABD(SAS)
∴∠ACE=∠ABD=45°
∴∠BCE=∠BCA+∠ACE=45°+45°=90°
∴∠BCE的度数不变,为90°;
②∵BC=3,CD=6,
∴BD=9,
∵△ACE≌△ABD,
∴CE=BD=9,
在Rt△ECD中,
=117,
在Rt△ADE中,
∵AD=AE
∴ =117,,
∴△ADE的面积=;
故答案为:.
【题目】为了了解七年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°,根据图表中提供的信息,回答下列问题:
体育成绩统计表 | ||
体育成绩(分) | 人数(人) | 百分比(%) |
26 | 8 | 16 |
27 | 12 | 24 |
28 | 15 | |
29 | n | |
30 |
(1)求样本容量及n的值;
(2)已知该校七年级共有500名学生,如果体育成绩达28分以上为优秀,请估计该校七年级学生体育成绩达到优秀的总人数.