题目内容
【题目】如图,在△ABC和△ADE中,AC=AB,AE=AD,∠CAB=∠EAD=90°
(1)求证:CE=BD;
(2)求证:CE⊥BD.
【答案】(1)、证明过程见解析;(2)、证明过程见解析.
【解析】
试题分析:(1)、由已知条件证出∠CAE=∠BAD,由SAS证明△CAE≌△BAD,得出对应边相等即可;
(2)、延长BD交CE于F,由全等三角形的性质得出∠ACE=∠ABD,由角的互余关系得出∠ABC+∠ACB=90°,证出∠DBC+∠BCF=90°,得出∠BFC=90°即可.
试题解析:(1)、∵∠CAB=∠EAD=90°, ∴∠CAE=∠BAD. 在△CAE和△BAD中,
, ∴△CAE≌△BAD(SAS), ∴CE=BD.
(2)、延长BD交CE于F,如图所示: ∵△CAE≌△BAD, ∴∠ACE=∠ABD, ∵∠CAB=90°,
∴∠ABC+∠ACB=90°, 即∠ABD+∠DBC+∠ACB=90°, ∴∠DBC+∠ACB+∠ACE=90°,
即∠DBC+∠BCF=90°, ∴∠BFC=90°, ∴CE⊥BD.
练习册系列答案
相关题目