题目内容

【题目】如图,有一座石拱桥的桥拱是以为圆心,为半径的一段圆弧.

请你确定弧的中点;(要求:用尺规作图,保留作图痕迹,不写作法和证明)

如果已知石拱桥的桥拱的跨度(即弧所对的弦长)为米,拱高(即弧的中点到弦的距离)为米,求桥拱所在圆的半径.

【答案】(1)详见解析;(2)桥拱所在圆的半径为

【解析】

(1)根据垂径定理可以作弦AB的垂直平分线,和弧的交点即是弧的中点;

(2)设圆O的半径为r,在RtADO中由勾股定理列出方程求出r即可.

(1)如图:点E即为所求的中点;

(2)过圆OOEABD,在直角三角形AOD中,AB=24m,DE=8m,

AD=AB=12(cm),

AO=rcm,

OD=r8(cm),

r2=122+(r8)2

解得:r=13cm.

答:桥拱所在圆的半径为13cm.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网